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Abstract. At the end of the 19" century geometers like Clebsch, Klein and Ro-
denberg constructed plaster models in order to get a visual impression of their
surfaces, which are so beautiful from an abstract point of view. But these were
static visualizations. Using the computer program Spicy', which was written by
the second author, one can now draw algebraic curves and surfaces depending on
parameters interactively.

Using this software and Coble’s explicit equations for the cubic surface that
arises as the blowing-up of the projective plane in six points it was possible for the
first time to visualize how some of the 27 lines upon the cubic surface coalesce when
the surface develops a double point.

When the user drags one of the six points, the equation and a raytraced image of
the cubic surface are computed using external programs. As the whole process takes
less than half a second, one nearly gets the impression of a continuously changing
surface.

1 Introduction

A cubic surface in the real projective space P3 := P3(R) is the vanishing set
of a homogenous cubic polynomial in P2, i.e. it consists of all (z : y : 2 : w) €
P23, such that

aox® + a1’y + -+ apw® =0,

where a; € R,i=10,1,...,19.

The intensive study of cubic surfaces started in 1849, when the British
mathematicians Salmon and Cayley published the results of their correspon-
dence on the number of straight lines on a smooth cubic surface ([1], [19]).
In a letter, Cayley told Salmon that there could only exist a finite number
of such lines — and Salmon found this number to be 27 (allowing complex
lines?).

! Spicy — Space and Plane Interactive Constructive and Algebraic Geometry —
is a dynamic constructive geometry software, that uses external programs like
SINGULAR ([12]) and Surr ([9]) to visualize algebraic curves and surfaces.

% In fact, Clebsch constructed the famous Diagonal Surface in [5] and showed that
it contained 27 real lines.
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Shortly after that Steiner wrote a short but fruitful article ([21]) which
became the basis for a purely geometrical treatment of cubic surfaces. In that
paper he formulated many theorems, but for most of them he did not even
indicate the idea of the proof. Many of these proofs were supplied ten years
later independently by Cremona ([7]) and Sturm ([23]).

Other important contributions were made by Cayley, Schlifli, Klein, Ro-
denberg and Clebsch?® — the latter gave, e.g., the explicit equation (in terms
of determinants) of a covariant of order 9, which intersects the cubic surface
exactly in the 27 lines (cf. appendix). This proves both the existence and the
number of lines on smooth cubic surfaces.

After all these results had been established, the mathematicians of the
19*" century started to build plaster models of cubic surfaces in order to get
a visual impression of these objects, which are so beautiful from an abstract
point of view.

The objective of the computer program SPICY is to allow mathematicians of
the 21%* century not only to make static models or movies of surfaces and
curves, but also to manipulate them interactively.

For this purpose, another theorem of Clebsch ([4]) is important:

Theorem 1 FEvery smooth cubic surface can be represented in the plane using
4 plane cubic curves through siz points and vice versa.*

As we will not only visualize cubic surfaces, but also the straight lines on
them, we need a notation for these 27 lines. Over the last 150 years, several
notations have been established, but for our needs, the one introduced by
Schléfli in 1858 seems to be the most convenient one. In his article on the
classification of cubic surfaces with respect to the number of real lines and
triple tangent planes on them ([20]), Schléfli discovered a very interesting
property of the 27 lines:

Notation 1 On every smooth cubic surface one can always choose two sets
of six lines, say ay,...,ag and by,...,bg, such that the incidence diagram is
as shown in fig. 1.

Let P be the plane in P? spanned by two intersecting lines a;, b; for some
i # j. As any plane, P intersects the cubic surface in a cubic curve. This
curve is reducible; it consists of the two lines a;, b; and a third line c;;.
Repeating this process for any i # j, we get the remaining (3) = 15 lines
¢i; and have thus established a notation for all the 27 lines, which is called
Schlifli’s double-six notation. The configuration of these 27 lines was a subject
of intense investigation in the 19" century. For a more modern approach we

3 See [15] and [22] for a more complete list of references.
For some of those surfaces, we must allow complex coordinates for some points.
In this article, we will start from a representation in the real plane, so we will
not be able to get all the smooth cubic surfaces, but only those on which all the
lines are real.
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ai|az|as|aas|as|aes
b1 X|X|X|x|x
ba| x X | X|X|x
ba| x| x X | X | %
ba| x| x| x X | %
bs| x| x| x|x X
be| x| x| x|x|x

Fig. 1. Incidence diagram of a double-six. An X indicates, that the two lines inter-
sect.

refer to [17, sections 6.1.2, 6.1.3] and [11], where the 27 lines are seen as lines
of the unique finite generalized quadrangle with parameters (4, 2).

In our application the initial choice of the 2 - 6 lines a;, b;, i = 1,...,6,
will arise in a natural way in the next section — e.g. the lines a;,...,as will
correspond to the six points in the plane.

2 Blowing-Up the Plane in Six Points

We will first construct the blowing-up of the affine plane A2 := A2(R) at
the origin O = (0,0).

Definition 1 Let (z1,z2) be the affine coordinates of A2 and let (y; : y2)
be the projective coordinates of PLWe define the blowing-up of A2 at the
point O to be the closed subset A2 of A% x P! defined by the equation
Z1y2 = z2y1. We have a natural morphism 7 : A2 —s A2, obtained by

— . P
A2 = A2 x P!

A2
Fig. 2. Blowing-up the affine plane A? in a point.
restricting the projection of A2 x P! to the first factor.

As we want to understand the blowing-up visually, we give the following
properties (cf. [14, p. 28]):

Fact 1 With the notations of the previous definition, we have:
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o The restriction of  to the set A2\1w=1(0) is bijective.

o 1 (0) = P!.

o The points of m=1(0) are in 1 — 1 correspondence with the set of lines
through O in A? (fig. 3).

™

-

Fig. 3. Blowing-up the plane in one point. This was visualized using SpiCy, but
we will not explain that here; the construction is similar to the one presented in
section 3.3.

Definition 2 If C C A?is a curve in A?, we call

C:= 7r|;_x£\{0}(0\{0})

the strict transform of C.

All the notions introduced in this section can be generalized (cf. [14, 163-
171] or [8]), so that we can talk of the blowing-up of the projective plane
P2 := P?(R) in six points and the strict transform of a curve under this
blowing-up.

This enables us to formulate the following well-known facts (for proofs,
cf. [14, p. 400, 401] and [15, p. 30]):

Fact 2 Let S := {Py,...,Ps} C P? be a set of siz points in the plane, such
that no three_are collinear and not all siz are on a common conic. Then the
blowing-up P2of the projective plane P? in S can be embedded as a smooth
cubic surface in projective three-space P3.

Denoting by @ : P2 < P? this embedding and by 7 : P2 — P? the
projection as in fig. 2, we have:

Fact 3 Let S := {Pi,...,Ps} C P2 be a set of siz points in the plane,
such that no three are collinear and not all siz are on a common conic. Let
Qi C P? denote the unique conic through the five points {P1,..., Ps}\{P;}
fori=1,2,...,6 and let l;; C P2 denote the straight line through the points
P; and P; fori,j = 1,2,...,6, % # j. Then the 27 lines lying on the cubic
surface are as follows:
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e The 6 exceptional lines over the 6 base points P;:

a; = p(rH(P) cP3 i=1,2,...,6.

e The 6 strict transforms of the 6 plane conics Q;:

bi:=3(Q;) CP? i=1,2,...,6.

e The 15 strict transforms of the 15 = (J) lines l;; joining the P;:

cij =3(ly) CP%, 0,5 =1,2,...,6, i #j.

Furthermore, the lines a; and b;, i = 1,...,6, intersect according to the
diagram in fig. 1 (i.e. they form a double siz) and the c;;, i # j, are the
remaining 15 lines in Schlifli’s notation.

3 Visualizing Cubic Surfaces using SPICY

Using the results presented in the previous section, we can study some special
point configurations and some properties of the corresponding cubic surfaces
and the 27 lines on them.

First, we will see how the general situation of blowing-up the plane in
six points can be visualized using SPICY and then we will focus on some
interesting cases, where the use of this interactive software enlightens the
situation.

3.1 SprICY

The core of the computer software SPICY ([16]) is a constructive geometry
program designed both for visualizing geometrical facts interactively on a
computer and for including them in publications. Its main features are:

e Connection to external software like the computer algebra system SIN-
GULAR ([12]) and the visualization software SURF ([9]), which enables the
user to include algebraic curves and surfaces in dynamic constructions.

e Comfortable graphical user-interface (cf. fig. 4) for interactive construc-
tions using the computer-mouse including macro-recording, animation,
etc.

e High quality export to .fig-format (and in combination with external
software like XFIG or FIG2DEV export to many other formats, like .eps,
.pstex, etc.).
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3.2 Eckardt Points

The first situation we discuss concerns a very special kind of smooth points
on a cubic surface:

Definition 3 An Eckardt Point on a cubic surface is a smooth point, where
three of its straight lines meet.

On a general cubic surface there is no Eckardt Point, but when starting
from the plane representation, the following is easy to see:

Proposition 1 Let S := {P,,...,Ps} C P? be a set of siz points, such that
no three are collinear and not all siz are on a common conic. Denote by l;;
the 15 lines through P; and P; for i # j and by Q; C P? the unique conic
through the five points {Py,..., Ps}\{FP;} for i =1,2,...,6. Then:

o If three of the lines l;; meet in a point P € P?\{P,...,Ps}, then the
corresponding lines Z;; on the cubic surface meet in an Eckardt Point
(fig- 4).

e If l;; touches the conic Q; in P; for some i,j € {1,...,6}, i # j, then
the corresponding lines aj := (m 10 3)(P;), b := Q; and Cij = Z;; on the
cubic surface meet in an Eckardt Point.

Proof: Recall the properties of blowing-up given in fact 1. Then both parts
are easy to see:

e The application 7! o & is bijective on P?\S.

e Both Q; and [;; have the same tangent direction in P;, so the correspond-
ing lines b; := Q; and Cij = E; meet the line a; := (77! o @)(P;) in the
same point. O

We will describe in the following how we can visualize the first of these
situations using SPICY.

The Computer Algebra Part. First, we need to know from an ab-
stract point of view, what we want to visualize. So we implement a function,
say cubicSurfaceFor6PointsWithLines, for the computer algebra program
SINGULAR, that takes the projective coordinates of the six points as an input
and returns the equations of the surface and the 27 lines on it in a format
that the visualization software SURF understands. This implies, in particular,
that we have to choose a plane at infinity in order to get an equation in affine
three-space. This function is part of the SINGULAR library spicy.1lib, which
can be downloaded from [16] or [22].

Example 1 The output for the Clebsch Diagonal Surface (without showing
the lines on it) could be, e.g. x~3+y~3+z"3+1- (x+y+z+1) "3.
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Fig. 4. A screen shot of the SPICY user interface showing three lines, that meet in
a point and the corresponding cubic surface, which contains an Eckardt Point (3).
Buttons 1 and 2 are used to draw the lines and the surface, respectively.

In fact, the method we use there does not calculate the blowing-up by means
of computer algebra. Coble explains in [6] how the equations can be calculated
from the six points simply by computing some products and sums of 3 x 3
determinants (cf. appendix). The detailed study of this (cf. [15]) enables us
to calculate the equations defining each of the 27 lines a;, b;, ci; separately®.
Thus, using SPICY we can not only visualize all the 27 lines at a time, but
also just some selected ones.

The Sricy Part. We start the software by typing spicy on the command
line®. The working area will show a visualization of Poncelet’s theorem, which
was historically the first problem constructed using SPICY. So, to clean up,
we select file -> new construction from the menu.

To satisfy the condition of the first case of proposition 1, we need three
lines that meet in a point (in fig. 4, the Eckardt Point is marked by circle 3).
To construct them, we first press button 1 (marked in fig. 4) in SPICY’s tools
window to switch to the infinite line through two points mode and then click
twice on the working area to define these two points. After that, the program
switches automatically back to the default mode, which allows us to drag the
points and thus move the lines they define.

Repeating this process three times, we get three lines in the plane. By drag-

% The SINGULAR functions related to Coble’s equations are packed in the library
coble.lib, which can also be downloaded from [16] or [22].

5 For instructions on how to download and install the software, cf. [16]. As SpICY is
implemented in Java, it runs on most systems. The external software SINGULAR
([12]) is available for most systems, too. Unfortunately, the visualization software
SURF, which is also developed at the university of Mainz, is only available for
Linux or Unix at the moment.
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ging the points, we can adjust them, so that all the three lines meet in a
point (approximately”) as in fig. 4.

It remains to define the surface. We press button 2 (marked in fig. 4) to
switch to the surface mode. To tell SPICY, that the calculation of the surface
is based on the six points, we click on each of them once and then we press
the mouse button again somewhere on the working area together with the
control key held down.

A window shows up, where we can enter the command that tells SPICY how
to calculate the surface. In our case, this will be
{cubicSurfaceFor6PointsWithLines:#0.p#,#1.p#,#2.p#,#3.p#,#4.p#,#5.p#},
where cubicSurfaceFor6PointsWithLines is the name of the SINGULAR
function, that we discussed in the previous subsection and where #0.p# is a
place-holder for the projective coordinates of the 0** point that we selected
earlier etc.

Once we have done this, SPICY opens a separate window that shows the
cubic surface, which is the blowing-up of the six points (fig. 4). If we do not
see three lines intersecting in a point yet, we can rotate the surface just by
dragging the mouse on the image.

Playing with Cubic Surfaces. We could have visualized this just by using
SINGULAR and SURF — without SPICY. But here, SPICY’s main feature comes
into play: We can drag the points and accordingly the software recomputes
the image of the cubic surface. As the whole process of calculating the new
equations and the new image (fig. 5) only takes less than half a second,
the user nearly gets the impression of a continuously changing surface while
dragging points.

point
moved
calculate compute di
spla;
new equation = —® new image P ) Y
using SINGULAR using SURF new image
\ wait until
any point
is moved

Fig. 5. The whole process of recomputing the image of the cubic surface only takes
less than half a second.

This could not be done using other existing dynamic geometry software
like CINDERELLA or GEONEXT, because these programs can not perform
groebner basis computations or visualization of algebraic surfaces. On the
other hand, standard software like MATHEMATICA and MAPLE do not have

" To make them meet exactly, we may enter the coordinates of the points explicitly;
cf. the tutorials on [16].
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any dynamic geometry features and visualization of algebraic surfaces takes
much longer and is less exact than with SURF. This is the reason why we
combined our interactive geometry software SPICY with the computer algebra
software SINGULAR and the visualization software SURF.

3.3 Double Points

While playing with the cubic surfaces as explained in the previous section,
one could discover the following: If three of the six points are collinear or if
all the six points are on a common conic, then the blowing-up is no longer
smooth, but it is a cubic surface in projective three-space with singularities®.
More exactly, using the notations of fact 3, we have in the case of six points
on an irreducible conic (cf. [15] for a discussion of this and the other cases®):

Fact 4 Let S := {Py,...,Ps} C P2 be a set of siz points in the projective
plane, where no three are collinear. Then: If all the siz points are on a conic
(this conic is irreducible, because no three points are collinear), then the cor-
responding cubic surface contains an ordinary double point Q). More exactly,
with the notations introduced in proposition 1, we have:

Q=Qi=Q=--=Qs

Furthermore, if P},i € {1,2,...,6} is a point, such that S} := S\P; U P}
is a set of siz points, where no three are collinear and not all the siz points
are on a common conic, denote by Q) the strict transform of Q; under the
blowing-up of the projective plane P? in S!. Then the straight lines

a; and by := lim Q!
P;—)P,'

i=1,...,6,

Iz
coincide and all these siz distinct lines meet in Q (fig. 6).

3.4 Cutting the Surface by a Plane

Now we describe how we can use SPICY to learn more about this surface. We
cut the surface by a plane in three-space and show the resulting curve in the
plane (fig. 7).

To do so, we must define a plane P in three-space and the curve in the
plane P? cut out of the cubic surface by P. Given the equation of a surface
and a plane, it is easy to write a SINGULAR script, that computes their
intersection. For the equation of the plane, we choose z + (8 - r — 4), where

8 Already Clebsch knew that the projective plane blown up in six points, which lie
on a common plane conic, is a cubic surface with an ordinary double point ([4]).

9 If three points are collinear, the corresponding cubic surface has an A; singularity
and if six points are on a common reducible conic, the corresponding cubic surface
has an A, singularity.
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° Py

Py Pg Ps

Fig. 6. The blowing-up of the projective plane in six points, such that all six are on
a common conic, is a cubic surface with an ordinary double point. Note the changing
of the lines, when we drag the point P». When P> lies on the conic through the
other five points, 2 - 6 lines meet in the double point (1b — 3b) and six pairs of two

lines coincide (la — 3a).

Fig. 7. Cutting the surface by a plane. The equation of the plane is just x+(8-r—4),
where r is defined as the ratio of the length of the upper part of the segment and
the length of the whole segment. So, while dragging the point on the segment, the
plane passes through the surface and Spicy shows both the plane and the surface
in the 3d-view and the curve cut out by the plane in the 2d-view.

N
O
—
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r € [0,1] is a parameter that we would like to change by dragging some
point of our construction. We can do this as follows: We draw a segment and
a point on this segment (fig. 7, upper part). Then we define r as the ratio
of the length of the upper part of the segment and the length of the whole
segment. We hide the six points and the lines between them in the SpiCYy
construction using SPICY’s so-called object browser (the left window in fig. 4),
so that we only see the curve and the parameter segment. This visualization
can now be exported in high quality to .fig format in order to use it for a
publication.

4 Appendix

4.1 Clebsch’s Explicit Equation for the Covariant of Order 9
that Meets the Cubic Surface in the 27 Lines

In [3] Clebsch gives an explicit equation for the covariant F of order 9 that
meets a smooth cubic surface u(x1,z2,x3,24) = 0 in projective three-space
in its 27 lines in terms of three determinants. Its existence proves both the
existence and the number of lines on a smooth cubic surface:

F =0 —4AT,
where @, A and T are defined as follows.

o A :=det(u;;) := det ( Ou ), the hessian of u.

Owx;0x;

For the other two determinants we write A, := 22 and accordingly A,, :=

dxp
%. Furthermore, we denote by U;; the entries of the Cramer Matriz of
A, ie. Ujj = (=1)"Iu¥, where we denote by u/ the determinant of the
submatrix of A, where the i** row and the j** column are removed. With this

we can define:
e 0:=3 UpApAy = Zp Zq UpgApAy,

o T:=) UpgApg = Ep Eq UpqApg-

4.2 Coble’s Explicit Parametrization for the Cubic Surface
and the 27 Lines on it.

Let S := {P1,...,Ps} C P2 be a set of six points in the plane, such that
no three are collinear and not all the six points are on a common conic. For
such a configuration of six points, Coble ([6]) gives explicit equations for the
blowing-up of the projective plane P2 in S and the 45 so-called triple tangent
planes cutting out the 27 straight lines of this cubic surface. They can be
calculated as follows.
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Denoting by (P;, : Py, : P;,) the coordinates of P; € P2, i =1,2,...,6,
we write for 4, j, k,l,m,n € {1,2,...,6}:

Pi, Pj, Py,
(Z]k) = det sz Pjy Pky

Piz sz sz

and
(24, kl,mn) = (ijm)(kin) — (ijn)(klm).

We can now define six coeflicients g, z7, ...,7T5 € R:
670 = +(15,24, 36)+ (14, 35, 26)+(12, 43, 56) +(23, 45, 16) +(13, 52, 46),
671 = —(15, 24, 36) +(25,34,16)+(13, 54, 26) +(12, 35, 46) +(14, 23, 56),
67> = —(14,35,26)—(25, 34, 16) +(15, 32, 46) +(13, 24, 56) +(12, 45, 36),
673 = — (12,43, 56)— (13, 54, 26)— (15, 32, 46) +(14, 52, 36) +(24, 35, 16),
671 = —(23,45,16)—(12, 35, 46)—(13, 24, 56)— (14, 52, 36) +(15, 34, 26),
675 = —(13,52,46)—(14, 23,56)—(12, 45, 36)— (24, 35, 16)— (15, 34, 26).

With these notations, Coble ([6]) gives the explicit equation of the blowing-
up of the projective plane in the six points Py, Ps, ..., Ps as an equation in
projective five-space P3:

3 3 3 3 3 3

$0+Z‘1+$2+1‘3+$4+$5=0, Where

To+ Ty + 22+ 23+ T4+ 25 =0, and
ToTo + T12L1 + T2x2 + T3x3 + Taxa + Trxs = 0.

Via the two linear equations this surface can be embedded in projective three-
space P23, because for our set of six points S (no three points are collinear, not
all six are on a conic) there are always two indices i # j, such that z; # 7;.

Furthermore, the 15 triple tangent planes which meet the cubic surface
in three lines cqp, Ceds Cef, {@,b,¢,d, e, f} = {1,2,...,6} each are:

Ej=zi+z;=0,i,j=1,2,...,6, i #J.

There are 30 other triple tangent planes. These planes E¥ meet the cubic
surface in the three lines a;, b; and ¢;5, 4,5 € {1,2,...,6}, i # j. They are
linear combinations of the 15 planes given above, e.g.

E'? = (531)(461)(xo + z3) — (341)(561)(z1 + z4) = 0.

[6] discusses this in more detail and [15] lists all the 45 triple tangent planes
and 27 lines. Here we only give the set of 9 triple tangent planes, that we
used to cut out all the 27 lines for the visualizations in this article:

Eo1, Eo2, Eos, B, E*® | B3 E*® 56 E'S.
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